Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Magn Reson Med ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342981

RESUMO

PURPOSE: There are 118 known elements. Nearly all of them have NMR active isotopes and at least 39 different nuclei have biological relevance. Despite this, most of today's MRI is based on only one nucleus-1 H. To facilitate imaging all potential nuclei, we present a single transmit coil able to excite arbitrary nuclei in human-scale MRI. THEORY AND METHODS: We present a completely new type of RF coil, the Any-nucleus Distributed Active Programmable Transmit Coil (ADAPT Coil), with fast switches integrated into the structure of the coil to allow it to operate at any relevant frequency. This coil eliminates the need for the expensive traditional RF amplifier by directly converting direct current (DC) power into RF magnetic fields with frequencies chosen by digital control signals sent to the switches. Semiconductor switch imperfections are overcome by segmenting the coil. RESULTS: Circuit simulations demonstrated the effectiveness of the ADAPT Coil approach, and a 9 cm diameter surface ADAPT Coil was implemented. Using the ADAPT Coil, 1 H, 23 Na, 2 H, and 13 C phantom images were acquired, and 1 H and 23 Na ex vivo images were acquired. To excite different nuclei, only digital control signals were changed, which can be programmed in real time. CONCLUSION: The ADAPT Coil presents a low-cost, scalable, and efficient method for exciting arbitrary nuclei in human-scale MRI. This coil concept provides further opportunities for scaling, programmability, lowering coil costs, lowering dead-time, streamlining multinuclear MRI workflows, and enabling the study of dozens of biologically relevant nuclei.

2.
J Mol Endocrinol ; 72(3)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194365

RESUMO

Mechanisms underlying limitations in glucose supply that restrict fetal growth are not well established. IGF-1 is an important regulator of fetal growth and IGF-1 bioavailability is markedly inhibited by IGFBP-1 especially when the binding protein is hyperphosphorylated. We hypothesized that the AMPK-mTORC1 pathway increases IGFBP-1 phosphorylation in response to glucose deprivation. Glucose deprivation in HepG2 cells activated AMPK and TSC2, inhibited mTORC1 and increased IGFBP-1 secretion and site-specific phosphorylation. Glucose deprivation also decreased IGF-1 bioavailability and IGF-dependent activation of IGF-1R. AICAR (an AMPK activator) activated TSC2, inhibited mTORC1, and increased IGFBP-1 secretion/phosphorylation. Further, siRNA silencing of either AMPK or TSC2 prevented mTORC1 inhibition and IGFBP-1 secretion and phosphorylation in glucose deprivation. Our data suggest that the increase in IGFBP-1 phosphorylation in response to glucose deprivation is mediated by the activation of AMPK/TSC2 and inhibition of mTORC1, providing a possible mechanistic link between glucose deprivation and restricted fetal growth.


Assuntos
Hipoglicemia , Fator de Crescimento Insulin-Like I , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Glucose , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Desenvolvimento Fetal
3.
Neurobiol Dis ; 187: 106288, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37704057

RESUMO

Mutations in the NADH dehydrogenase (ubiquinone reductase) iron­sulfur protein 4 (NDUFS4) gene, which encodes for a key structural subunit of the OXFOS complex I (CI), lead to the most common form of mitochondrial disease in children known as Leigh syndrome (LS). As in other mitochondrial diseases, epileptic seizures constitute one of the most significant clinical features of LS. These seizures are often very difficult to treat and are a sign of poor disease prognosis. Mice with whole-body Ndufs4 KO are a well-validated model of LS; they exhibit epilepsy and several other clinical features of LS. We have previously shown that mice with Ndufs4 KO in only GABAergic interneurons (Gad2-Ndufs4-KO) reproduce the severe epilepsy phenotype observed in the global KO mice. This observation indicated that these mice represent an excellent model of LS epilepsy isolated from other clinical manifestations of the disease. To further characterize this epilepsy phenotype, we investigated seizure susceptibility to selected exogenous seizure triggers in Gad2-Ndufs4-KO mice. Then, using electrophysiology, imaging, and immunohistochemistry, we studied the cellular, physiological, and neuroanatomical consequences of Ndufs4 KO in GABAergic interneurons. Homozygous KO of Ndufs4 in GABAergic interneurons leads to a prominent susceptibility to exogenous seizure triggers, impaired interneuron excitability and interneuron loss. Finally, we found that the hippocampus and cortex participate in the generation of seizure activity in Gad2-Ndufs4-KO mice. These findings further define the LS epilepsy phenotype and provide important insights into the cellular mechanisms underlying epilepsy in LS and other mitochondrial diseases.


Assuntos
Epilepsia , Doença de Leigh , Doenças Mitocondriais , Humanos , Criança , Camundongos , Animais , Doença de Leigh/genética , Convulsões/genética , Complexo I de Transporte de Elétrons/genética , Epilepsia/genética , Interneurônios/metabolismo , Camundongos Knockout
4.
J Transl Med ; 21(1): 377, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301958

RESUMO

AIMS: Long-COVID occurs after SARS-CoV-2 infection and results in diverse, prolonged symptoms. The present study aimed to unveil potential mechanisms, and to inform prognosis and treatment. METHODS: Plasma proteome from Long-COVID outpatients was analyzed in comparison to matched acutely ill COVID-19 (mild and severe) inpatients and healthy control subjects. The expression of 3072 protein biomarkers was determined with proximity extension assays and then deconvoluted with multiple bioinformatics tools into both cell types and signaling mechanisms, as well as organ specificity. RESULTS: Compared to age- and sex-matched acutely ill COVID-19 inpatients and healthy control subjects, Long-COVID outpatients showed natural killer cell redistribution with a dominant resting phenotype, as opposed to active, and neutrophils that formed extracellular traps. This potential resetting of cell phenotypes was reflected in prospective vascular events mediated by both angiopoietin-1 (ANGPT1) and vascular-endothelial growth factor-A (VEGFA). Several markers (ANGPT1, VEGFA, CCR7, CD56, citrullinated histone 3, elastase) were validated by serological methods in additional patient cohorts. Signaling of transforming growth factor-ß1 with probable connections to elevated EP/p300 suggested vascular inflammation and tumor necrosis factor-α driven pathways. In addition, a vascular proliferative state associated with hypoxia inducible factor 1 pathway suggested progression from acute COVID-19 to Long-COVID. The vasculo-proliferative process predicted in Long-COVID might contribute to changes in the organ-specific proteome reflective of neurologic and cardiometabolic dysfunction. CONCLUSIONS: Taken together, our findings point to a vasculo-proliferative process in Long-COVID that is likely initiated either prior hypoxia (localized or systemic) and/or stimulatory factors (i.e., cytokines, chemokines, growth factors, angiotensin, etc). Analyses of the plasma proteome, used as a surrogate for cellular signaling, unveiled potential organ-specific prognostic biomarkers and therapeutic targets.


Assuntos
COVID-19 , Humanos , Proteoma , SARS-CoV-2 , Síndrome Pós-COVID-19 Aguda , Estudos Prospectivos , Encéfalo , Biomarcadores
5.
J Magn Reson ; 348: 107376, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696733

RESUMO

Excitation in MRI is traditionally done at the Larmor frequency, where the energy of each radiofrequency photon corresponds to the energy difference between two spin states. However, if multiple radiofrequencies are employed, then multiphoton excitation can also occur when the sum or difference of multiple photon frequencies equals the Larmor frequency. Although multiphoton excitation has been known since the early days of NMR, it has been relatively unexplored in MRI. In this work, equations and principles for multiphoton selective RF pulse design in imaging are presented and experimentally demonstrated. In particular, the case where there are radiofrequency fields in both the traditional xy-direction and non-traditional z-direction is considered. To produce the z-direction radiofrequency field, an additional uniform coil was added to a clinical MRI scanner. Using this coil, two-photon slice-selective pulses were designed to be equivalent to traditional pulses, producing similar excitation, slice profiles, and in vivo images. Being the result of a combination of multiple radiofrequency fields instead of just one, two-photon pulses have more flexibility in how their parameters can be changed. Although individual multiphoton excitations are less efficient than their traditional counterparts, when the z-direction radiofrequency field is spatially non-uniform, multiple multiphoton resonances can be simultaneously used at different locations to produce simultaneous multislice excitation with the same pulse duration but less tissue heating than a naive implementation. In particular, non-uniform z-direction radiofrequency fields with negligible added tissue heating provided by oscillating the MRI scanner's gradient fields at kilohertz frequencies were used to excite multiple slices simultaneously with less high-frequency xy-direction radiofrequency power. For an example three-slice excitation, we achieve half the xy-direction radiofrequency power compared to the naïve approach of adding three single-slice pulses. For conventional or unconventional applications, multiphoton excitation may be of interest when designing new MRI systems.

6.
J Cell Mol Med ; 27(1): 141-157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537107

RESUMO

Coronavirus disease 2019 (COVID-19) is a systemic inflammatory condition with high mortality that may benefit from personalized medicine and high-precision approaches. COVID-19 patient plasma was analysed with targeted proteomics of 1161 proteins. Patients were monitored from Days 1 to 10 of their intensive care unit (ICU) stay. Age- and gender-matched COVID-19-negative sepsis ICU patients and healthy subjects were examined as controls. Proteomic data were resolved using both cell-specific annotation and deep-analysis for functional enrichment. COVID-19 caused extensive remodelling of the plasma microenvironment associated with a relative immunosuppressive milieu between ICU Days 3-7, and characterized by extensive organ damage. COVID-19 resulted in (1) reduced antigen presentation and B/T-cell function, (2) increased repurposed neutrophils and M1-type macrophages, (3) relatively immature or disrupted endothelia and fibroblasts with a defined secretome, and (4) reactive myeloid lines. Extracellular matrix changes identified in COVID-19 plasma could represent impaired immune cell homing and programmed cell death. The major functional modules disrupted in COVID-19 were exaggerated in patients with fatal outcome. Taken together, these findings provide systems-level insight into the mechanisms of COVID-19 inflammation and identify potential prognostic biomarkers. Therapeutic strategies could be tailored to the immune response of severely ill patients.


Assuntos
COVID-19 , Humanos , Proteoma , SARS-CoV-2 , Proteômica , Gravidade do Paciente
7.
J Comp Neurol ; 531(3): 461-485, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36453181

RESUMO

This study was designed to explore the functional circuitry of the adult zebrafish cerebellum, focusing on its Purkinje cells and using whole-cell patch recordings and single cell labeling in slice preparations. Following physiological characterizations, the recorded single cells were labeled for morphological identification. It was found that the zebrafish Purkinje cells are surprisingly diverse. Based on their physiology and morphology, they can be classified into at least three subtypes: Type I, a narrow spike cell, which fires only narrow Na+ spikes (<3 ms in duration), and has a single primary dendrite with an arbor restricted to the distal molecular layer; Type II, a broad spike cell, which fires broad Ca2+ spikes (5-7 ms in duration) and has a primary dendrite with limited branching in the inner molecular layer and then further radiates throughout the molecular layer; and Type III, a very broad spike cell, which fires very broad Ca2+ spikes (≥10 ms in duration) and has a dense proximal dendritic arbor that is either restricted to the inner molecular layer (Type IIIa), or radiates throughout the entire molecular layer (Type IIIb). The graded paired-pulse facilitation of these Purkinje cells' responses to parallel fiber activations and the all-or-none, paired-pulse depression of climbing fiber activation are largely similar to those reported for mammals. The labeled axon terminals of these Purkinje cells end locally, as reported for larval zebrafish. The present study provides evidence that the corresponding functional circuitry and information processing differ from what has been well-established in the mammalian cerebellum.


Assuntos
Células de Purkinje , Peixe-Zebra , Animais , Células de Purkinje/fisiologia , Peixe-Zebra/fisiologia , Potenciais de Ação/fisiologia , Cerebelo , Axônios/fisiologia , Mamíferos
8.
Nat Commun ; 13(1): 5983, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216799

RESUMO

Brain metastases (BrMs) are a common occurrence in lung cancer with a dismal outcome. To understand the mechanism of metastasis to inform prognosis and treatment, here we analyze primary and metastasized tumor specimens from 44 non-small cell lung cancer patients by spatial RNA sequencing, affording a whole transcriptome map of metastasis resolved with morphological markers for the tumor core, tumor immune microenvironment (TIME), and tumor brain microenvironment (TBME). Our data indicate that the tumor microenvironment (TME) in the brain, including the TIME and TBME, undergoes extensive remodeling to create an immunosuppressive and fibrogenic niche for the BrMs. Specifically, the brain TME is characterized with reduced antigen presentation and B/T cell function, increased neutrophils and M2-type macrophages, immature microglia, and reactive astrocytes. Differential gene expression and network analysis identify fibrosis and immune regulation as the major functional modules disrupted in both the lung and brain TME. Besides providing systems-level insights into the mechanism of lung cancer brain metastasis, our study uncovers potential prognostic biomarkers and suggests that therapeutic strategies should be tailored to the immune and fibrosis status of the BrMs.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Fibrose , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transcriptoma , Microambiente Tumoral/genética
9.
Neural Regen Res ; 17(12): 2743-2749, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35662223

RESUMO

Brain radiomics can reflect the characteristics of brain pathophysiology. However, the value of T1-weighted images, quantitative susceptibility mapping, and R2* mapping in the diagnosis of Parkinson's disease (PD) was underestimated in previous studies. In this prospective study to establish a model for PD diagnosis based on brain imaging information, we collected high-resolution T1-weighted images, R2* mapping, and quantitative susceptibility imaging data from 171 patients with PD and 179 healthy controls recruited from August 2014 to August 2019. According to the inclusion time, 123 PD patients and 121 healthy controls were assigned to train the diagnostic model, while the remaining 106 subjects were assigned to the external validation dataset. We extracted 1408 radiomics features, and then used data-driven feature selection to identify informative features that were significant for discriminating patients with PD from normal controls on the training dataset. The informative features so identified were then used to construct a diagnostic model for PD. The constructed model contained 36 informative radiomics features, mainly representing abnormal subcortical iron distribution (especially in the substantia nigra), structural disorganization (e.g., in the inferior temporal, paracentral, precuneus, insula, and precentral gyri), and texture misalignment in the subcortical nuclei (e.g., caudate, globus pallidus, and thalamus). The predictive accuracy of the established model was 81.1 ± 8.0% in the training dataset. On the external validation dataset, the established model showed predictive accuracy of 78.5 ± 2.1%. In the tests of identifying early and drug-naïve PD patients from healthy controls, the accuracies of the model constructed on the same 36 informative features were 80.3 ± 7.1% and 79.1 ± 6.5%, respectively, while the accuracies were 80.4 ± 6.3% and 82.9 ± 5.8% for diagnosing middle-to-late PD and those receiving drug management, respectively. The accuracies for predicting tremor-dominant and non-tremor-dominant PD were 79.8 ± 6.9% and 79.1 ± 6.5%, respectively. In conclusion, the multiple-tissue-specific brain radiomics model constructed from magnetic resonance imaging has the ability to discriminate PD and exhibits the advantages for improving PD diagnosis.

10.
Sci Rep ; 12(1): 181, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996949

RESUMO

A major concern with preterm birth is the risk of neurodevelopmental disability. Poor cerebral circulation leading to periods of hypoxia is believed to play a significant role in the etiology of preterm brain injury, with the first three days of life considered the period when the brain is most vulnerable. This study focused on monitoring cerebral perfusion and metabolism during the first 72 h after birth in preterm infants weighing less than 1500 g. Brain monitoring was performed by combining hyperspectral near-infrared spectroscopy to assess oxygen saturation and the oxidation state of cytochrome c oxidase (oxCCO), with diffuse correlation spectroscopy to monitor cerebral blood flow (CBF). In seven of eight patients, oxCCO remained independent of CBF, indicating adequate oxygen delivery despite any fluctuations in cerebral hemodynamics. In the remaining infant, a significant correlation between CBF and oxCCO was found during the monitoring periods on days 1 and 3. This infant also had the lowest baseline CBF, suggesting the impact of CBF instabilities on metabolism depends on the level of blood supply to the brain. In summary, this study demonstrated for the first time how continuous perfusion and metabolic monitoring can be achieved, opening the possibility to investigate if CBF/oxCCO monitoring could help identify preterm infants at risk of brain injury.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/enzimologia , Circulação Cerebrovascular , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Recém-Nascido Prematuro , Imagem Óptica , Consumo de Oxigênio , Oxigênio/sangue , Espectroscopia de Luz Próxima ao Infravermelho , Peso ao Nascer , Estabilidade Enzimática , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Masculino , Oxirredução , Valor Preditivo dos Testes , Estudo de Prova de Conceito , Fatores de Tempo
11.
Front Mol Neurosci ; 14: 772847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899181

RESUMO

Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.

12.
iScience ; 24(10): 103094, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622149

RESUMO

FeRIC (Ferritin iron Redistribution to Ion Channels) is a magnetogenetic technique that uses radiofrequency (RF) alternating magnetic fields to activate the transient receptor potential channels, TRPV1 and TRPV4, coupled to cellular ferritins. In cells expressing ferritin-tagged TRPV, RF stimulation increases the cytosolic Ca2+ levels via a biochemical pathway. The interaction between RF and ferritin increases the free cytosolic iron levels that, in turn, trigger chemical reactions producing reactive oxygen species and oxidized lipids that activate the ferritin-tagged TRPV. In this pathway, it is expected that experimental factors that disturb the ferritin expression, the ferritin iron load, the TRPV functional expression, or the cellular redox state will impact the efficiency of RF in activating ferritin-tagged TRPV. Here, we examined several experimental factors that either enhance or abolish the RF control of ferritin-tagged TRPV. The findings may help optimize and establish reproducible magnetogenetic protocols.

13.
Mol Biol Rep ; 47(9): 6531-6544, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803505

RESUMO

Preeclampsia (PE) and intrauterine growth restriction (IUGR) are pregnancy complications resulting from abnormal placental development. MicroRNAs can regulate placental development and contribute to disease, by influencing gene expression. Our previous study revealed an increase in miR-193b-5p expression in placentae from patients with early-onset pregnancy complications and identified candidate gene targets for miR-193b-5p. The purpose of this study is two-fold, first to validate candidate gene targets predicted for miR-193b-5p from microRNA-RNA expression data. Second, to overexpress miR-193b-5p in a trophoblast cell line (HTR-8/SVneo) to assess impact on trophoblast cell proliferation and migration. Integration of the miRNA and RNA sequencing expression data revealed 10 candidate gene targets for miR-193b-5p across all patient groups (PE only, IUGR only, PE + IUGR). Luciferase experiments identified two gene targets for miR-193b-5p, APLN and FGF13. Real-time PCR confirmed a median 45% decrease of FGF13 expression across 3 patient groups, and 50% decrease of APLN expression in patients with PE + IUGR. Following transfection of HTR-8/SVneo cells with miR-193b-5p mimics, APLN and FGF13 mRNA expression in HTR-8/SVneo was reduced by a median percentage of 30% and 45%, respectively. Concomitantly, HTR-8/SVneo cells demonstrate 40% reduction in cell migration. APLN and FGF13 immunoreactivity was identified strongly in the cytotrophoblast cells of the human placentae. These findings suggest that miR-193b-5p may contribute to trophoblast dysfunction observed in pregnancy complications such as PE and IUGR.


Assuntos
Retardo do Crescimento Fetal/metabolismo , MicroRNAs/metabolismo , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Adulto , Apelina/genética , Apelina/metabolismo , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação para Baixo , Feminino , Retardo do Crescimento Fetal/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , MicroRNAs/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/fisiopatologia , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Trofoblastos/patologia , Regulação para Cima , Cicatrização/genética
14.
Brain Sci ; 10(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679665

RESUMO

Post-hemorrhagic ventricular dilatation (PHVD) is characterized by a build-up of cerebral spinal fluid (CSF) in the ventricles, which increases intracranial pressure and compresses brain tissue. Clinical interventions (i.e., ventricular taps, VT) work to mitigate these complications through CSF drainage; however, the timing of these procedures remains imprecise. This study presents Neonatal NeuroMonitor (NNeMo), a portable optical device that combines broadband near-infrared spectroscopy (B-NIRS) and diffuse correlation spectroscopy (DCS) to provide simultaneous assessments of cerebral blood flow (CBF), tissue saturation (StO2), and the oxidation state of cytochrome c oxidase (oxCCO). In this study, NNeMo was used to monitor cerebral hemodynamics and metabolism in PHVD patients selected for a VT. Across multiple VTs in four patients, no significant changes were found in any of the three parameters: CBF increased by 14.6 ± 37.6% (p = 0.09), StO2 by 1.9 ± 4.9% (p = 0.2), and oxCCO by 0.4 ± 0.6 µM (p = 0.09). However, removing outliers resulted in significant, but small, increases in CBF (6.0 ± 7.7%) and oxCCO (0.1 ± 0.1 µM). The results of this study demonstrate NNeMo's ability to provide safe, non-invasive measurements of cerebral perfusion and metabolism for neuromonitoring applications in the neonatal intensive care unit.

15.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32332079

RESUMO

The lateral habenula (LHb) sends complex projections to several areas of the mesopontine tegmentum, the raphe, and the hypothalamus. However, few markers have been available to distinguish subsets of LHb neurons that may serve these pathways. In order to address this complexity, we examined the mouse and rat LHb for neurons that express the GABA biosynthesis enzymes glutamate decarboxylase 1 (GAD1) and GAD2, and the vesicular GABA transporter (VGAT). The mouse LHb contains a population of neurons that express GAD2, while the rat LHb contains discrete populations of neurons that express GAD1 and VGAT. However, we could not detect single neurons in either species that co-express a GABA synthetic enzyme and VGAT, suggesting that these LHb neurons do not use GABA for conventional synaptic transmission. Instead, all of the neuronal types expressing a GABAergic marker in both species showed co-expression of the glutamate transporter VGluT2. Anterograde tract-tracing of the projections of GAD2-expressing LHb neurons in Gad2Cre mice, combined with retrograde tracing from selected downstream nuclei, show that LHb-GAD2 neurons project selectively to the midline structures in the mesopontine tegmentum, including the median raphe (MnR) and nucleus incertus (NI), and only sparsely innervate the hypothalamus, rostromedial tegmental nucleus (RMTg), and ventral tegmental area (VTA). Postsynaptic recording of LHb-GAD2 neuronal input to tegmental neurons confirms that glutamate, not GABA, is the fast neurotransmitter in this circuit. Thus, GAD2 expression can serve as a marker for functional studies of excitatory neurons serving specific LHb output pathways in mice.


Assuntos
Habenula , Animais , Camundongos , Vias Neurais , Neurônios , Núcleos da Rafe , Ratos , Tegmento Mesencefálico , Área Tegmentar Ventral
16.
Cell Rep ; 30(10): 3250-3260.e7, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160534

RESUMO

One approach to magnetogenetics uses radiofrequency (RF) waves to activate transient receptor potential channels (TRPV1 and TRPV4) that are coupled to cellular ferritins. The mechanisms underlying this effect are unclear and controversial. Theoretical calculations suggest that the heat produced by RF fields is likely orders of magnitude weaker than needed for channel activation. Using the FeRIC (Ferritin iron Redistribution to Ion Channels) system, we have uncovered a mechanism of activation of ferritin-tagged channels via a biochemical pathway initiated by RF disturbance of ferritin and mediated by ferritin-associated iron. We show that, in cells expressing TRPVFeRIC channels, RF increases the levels of the labile iron pool in a ferritin-dependent manner. Free iron participates in chemical reactions, producing reactive oxygen species and oxidized lipids that ultimately activate the TRPVFeRIC channels. This biochemical pathway predicts a similar RF-induced activation of other lipid-sensitive TRP channels and may guide future magnetogenetic designs.


Assuntos
Ferritinas/metabolismo , Canais Iônicos/metabolismo , Ferro/metabolismo , Metabolismo dos Lipídeos , Ondas de Rádio , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Citosol/metabolismo , Humanos , Ativação do Canal Iônico , Camundongos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Temperatura
17.
Magn Reson Med ; 84(3): 1184-1197, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32022369

RESUMO

PURPOSE: To develop a classical geometric interpretation of multiphoton excitation and apply it to MRI. To investigate ways in which multiphoton excitation can enable novel imaging techniques. THEORY AND METHODS: We present a fully geometric view of multiphoton excitation by taking a particular rotating frame transformation. In this rotating frame, we find that multiphoton excitations appear just like single-photon excitations again, and therefore, we can readily generalize concepts already explored in standard single-photon excitation. With a homebuilt low frequency coil, we execute a standard slice selective pulse sequence with all of its excitations replaced by their equivalent two-photon versions. In the case of no extra hardware, we use oscillating gradients as a source of extra photons for excitation. Finally, with the multiphoton interpretation of oscillating gradients, we present a novel way to transform a standard slice selective adiabatic inversion pulse into a multiband version without modifying the RF pulse itself. The addition of oscillating gradients creates multiphoton resonances at multiple spatial locations and allows for adiabatic inversions at each location. RESULTS: With Bloch-Siegert shift corrections, analytical multiphoton excitation expressions match with Bloch equation simulations. Two-photon gradient-echo images of a lemon and a pork rib match with their single-photon counterparts. Frequency-offset RF combined with oscillating gradients generate excitation where the RF alone does not. CONCLUSION: The multiphoton interpretation presents new flexibilities for imaging. Excitation needs not be bound to the Larmor frequency, which opens doors to RF pulse design beyond the usual filter design and the potential for further imaging innovations.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Rotação
18.
Pregnancy Hypertens ; 19: 159-168, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32014817

RESUMO

Preeclampsia (PE) and intrauterine growth restriction (IUGR) are pregnancy complications resulting from abnormal placental development. As epigenetic regulators, microRNAs can regulate placental development and contribute to the disease pathophysiology by influencing the expression of genes involved in placental development or disease. Our previous study revealed an increase in miR-210-5p expression in placentae from patients with early-onset pregnancy complications and identified candidate gene targets for miR-210-5p. The purpose of this study was to: (i) validate candidate gene targets predicted for miR-210-5p from microRNA-RNA expression data, and (ii) overexpress miR-210-5p in a trophoblast cell line (HTR-8/SVneo) to assess impact on trophoblast cell functions. Integration of the miRNA and RNA sequencing expression data revealed 8 candidate gene targets for miR-210-5p in patients with PE only or PE + IUGR. Luciferase reporter assays identified two gene targets for miR-210-5p, CSF1 and ITGAM. Real-time PCR confirmed the decreased expression of CSF1 and ITGAM in patients with PE + IUGR. Immunohistochemistry of placentae from late second trimester identified CSF1 and ITGAM in intermediate trophoblast cells in the decidua. Expression levels of CSF1 and ITGAM were reduced in HTR-8/SVneo cells following increased miR-210-5p expression. Concomitantly, HTR-8/SVneo cells demonstrate an average 45% reduction in cell migration. These findings suggest that miR-210-5p may contribute to dysfunction of intermediate trophoblasts and potentially contribute to the disease process of these pregnancy complications.


Assuntos
Retardo do Crescimento Fetal/metabolismo , MicroRNAs/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Antígeno CD11b/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Imuno-Histoquímica , Fator Estimulador de Colônias de Macrófagos/metabolismo , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Trofoblastos/fisiologia
19.
Pediatr Res ; 87(3): 450-455, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31185486

RESUMO

BACKGROUND: Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is reduced, and offspring from IUGR pregnancies are at increased risk for type II diabetes as adults. The liver is susceptible to fetal undernutrition experienced by IUGR infants and animal models of growth restriction. This study aimed to examine hepatic expression changes in a maternal nutrient restriction (MNR) mouse model of IUGR to understand fetal adaptations that influence adult metabolism. METHODS: Liver samples of male offspring from MNR (70% of ad libitum starting at E6.5) or control pregnancies were obtained at E18.5 and differential expression was assessed by RNAseq and western blots. RESULTS: Forty-nine differentially expressed (FDR < 0.1) transcripts were enriched in hypoxia-inducible pathways including Fkbp5 (1.6-fold change), Ccng2 (1.5-fold change), Pfkfb3 (1.5-fold change), Kdm3a (1.2-fold change), Btg2 (1.6-fold change), Vhl (1.3-fold change), and Hif-3a (1.3-fold change) (FDR < 0.1). Fkbp5, Pfkfb3, Kdm3a, and Hif-3a were confirmed by qPCR, but only HIF-2a (2.2-fold change, p = 0.002) and HIF-3a (1.3 p = 0.03) protein were significantly increased. CONCLUSION: Although a moderate impact, these data support evidence of fetal adaptation to reduced nutrients by increased hypoxia signaling in the liver.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Retardo do Crescimento Fetal/metabolismo , Hipóxia Fetal/metabolismo , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Estado Nutricional , Transdução de Sinais , Adaptação Fisiológica , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Hipóxia Fetal/genética , Hipóxia Fetal/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Fígado/crescimento & desenvolvimento , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...